Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans.

نویسندگان

  • Lu Han
  • Ying Wang
  • Rachele Sangaletti
  • Giulia D'Urso
  • Yun Lu
  • Shai Shaham
  • Laura Bianchi
چکیده

Neuronal DEG/ENaC (degenerin and epithelial Na(+) channel) Na(+) channels have been implicated in touch sensation. For example, MEC-4 is expressed in touch neurons in Caenorhabditis elegans and mediates gentle-touch response. Similarly, homologous mammalian ASIC2 and ASIC3 are expressed in sensory neurons and produce touch phenotypes when knocked out in mice. Here, we show that novel DEG/ENaC subunits DELM-1 and DELM-2 (degenerin-like channel mechanosensory linked-1 and degenerin-like channel mechanosensory linked-2) are expressed in glia associated with touch neurons in C. elegans and that their knock-out causes defects in mechanosensory behaviors related to nose touch and foraging, which are mediated by OLQ and IL1 sensory neurons. Cell-specific rescue supports that DELM-1 and DELM-2 are required cell-autonomously in glia to orchestrate mechanosensory behaviors. Electron microscopy reveals that in delm-1 knock-outs, OLQ and IL1 sensory neurons and associated glia are structurally normal. Furthermore, we show that knock-out of DELM-1 and DELM-2 does not disrupt the expression or cellular localization of TRPA-1, a TRP channel needed in OLQ and IL1 neurons for touch behaviors. Rather, rescue of the delm-1 nose-touch-insensitive phenotype by expression of a K(+) channel in socket glia and of a cationic channel in OLQ neurons suggests that DELM channels set basal neuronal excitability. Together, our data show that DELM-1 and DELM-2 are expressed in glia associated with touch neurons where they are not needed for neuronal structural integrity or cellular distribution of neuronal sensory channels, but rather for their function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons.

Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We...

متن کامل

A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans.

Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analys...

متن کامل

Localization of b and g subunits of ENaC in sensory nerve endings in the rat foot pad

The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, 1 we tested the hypothesis that subunits of the mammalian epithelial Na channel (ENaC) family are expressed in touch receptors in rat hairles...

متن کامل

MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans

The Caenorhabditis elegans DEG/ENaC proteins MEC-4 and MEC-10 transduce gentle touch in the six touch receptor neurons . Gain-of-function mutations of mec-4 and mec-4(d) result in a hyperactive channel and neurodegeneration in vivo Loss of MEC-6, a putative DEG/ENaC-specific chaperone, and of the similar protein POML-1 suppresses the neurodegeneration caused by a mec-4(d) mutation. We find that...

متن کامل

Knock - out of glial channel ACD - 1 exacerbates sensory deficits in a C . elegans mutant by 1 regulating calcium levels of sensory neurons

26 DEG/ENaC channels are voltage-independent Na or Na/Ca channels expressed in many 27 tissues and needed for a wide range of physiological functions, including sensory perception 28 and transepithelial Na transport. In the nervous system DEG/ENaCs are expressed both in 29 neurons and glia. However, the role of glial versus neuronal DEG/ENaCs remains unclear. We 30 recently reported the charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2013